
pyloudnorm: A simple yet flexible loudness meter in Python

Christian J. Steinmetz 1 Joshua D. Reiss 1

Abstract

The ITU-R BS.1770 recommendation for measur-
ing the perceived loudness of audio signals has
seen widespread adoption in broadcasting, and
due to its simplicity, this algorithm has now found
applications across audio signal processing. Here
we describe pyloudnorm, a Python package that
enables the measurement of integrated loudness
following the recommendation. While a number
of implementations are available, ours provides
an easy to install package, a simple interface, and
the ability to adjust the algorithm parameters, a
feature that other implementations neglect. We
discuss a set of modifications that we incorporate
based upon recent literature that aim to improve
the robustness of the loudness measurement. Fi-
nally, we perform an evaluation comparing the ac-
curacy and runtime of pyloudnorm with six other
implementations, identifying issues with several
of theses implementations.

1. Introduction
The nonlinear nature of the human auditory system makes
measurement of the perceived loudness of sound challeng-
ing (Stevens, 1955). While subjective loudness has been an
active area of research in psychoacoustics over the last half
century (Stevens, 1956; Zwicker & Scharf, 1965; Moore
& Glasberg, 1996; Moore, 2014), these models are often
complex and not applicable to measuring the loudness of
streaming or recorded audio. For this reason, there has
been a longstanding interest within the broadcast industry in
simple loudness models, as they enable the ability to moni-
tor and control the listener experience (Bauer et al., 1967;
Jones & Torick, 1981; Bauer & Torick, 1966; Skovenborg &
Nielsen, 2004; Soulodre, 2004; Lund, 2006). Concurrently,
there has been interest in methods for measuring the loud-
ness of music such as Vickers’ loudness (Vickers, 2001)
and ReplayGain (Robinson, 2002). In an effort to stan-

1Centre for Digital Music, Queen Mary University of Lon-
don, London, UK. Correspondence to: Christian J. Steinmetz
<c.j.steinmetz@qmul.ac.uk>.

dardize, simplify, and improve upon previous approaches,
the ITU-R BS.1770 recommendation was proposed (ITU-R
BS.1770-4), and has now seen widespread adoption (Lund,
2011; 2012). The proposed metering algorithm was later
included in the EBU R 128 recommendation, which dictates
loudness for broadcast material (EBU R 128).

The ITU-R BS.1770 recommendation proposes a straight-
forward algorithm consisting of frequency-weighting fil-
ters and gated energy measurements. The algorithm has
been shown to correlate well with the perceived loudness
of broadband content, is computationally efficient, and rela-
tively easy to implement. For all these reasons it has now
seen widespread adoption in the broadcast industry, and with
the rise of online streaming platforms, interest in content
normalization has sustained (Katz, 2015; Grimm, 2019).

While this recommendation has been found to correlate
well with broadband content, further listening studies have
discovered that this is not always the case, especially for nar-
rowband content (Cabrera et al., 2008; Pestana et al., 2013;
Fenton & Lee, 2017; Fenton, 2018). These investigations
have led to a series of proposed modifications to the original
recommendation, which generally consists of adjustments
to the algorithm parameters for the frequency-weighting
filters and gating block sizes. While these modifications
are relatively straightforward to incorporate, there has been
limited adoption thus far.

While originally intended for broadcast scenarios, due to its
simplicity and efficacy, the ITU-R BS.1770 recommenda-
tion has now found applications across audio signal process-
ing (Olive et al., 2013; Jillings et al., 2015; Friberg et al.,
2014; Schoeffler et al., 2013; Ward et al., 2012; Mansbridge
et al., 2012; Ward & Reiss, 2016; Fenton, 2018). In or-
der to meet the demand for applications outside its original
scope, a number of implementations now exist that provide a
programmatic interface. Unfortunately, most of these imple-
mentations are either difficult to install, provide an interface
that is not efficiently accessed from Python, or do not allow
for modifications of the algorithm parameters. For these
reasons, we built pyloudnorm1, a Python package that is
easily installed and integrated into existing projects, while
also providing the ability to adjust the underlying algorithm
parameters.

1
https://github.com/csteinmetz1/pyloudnorm

https://github.com/csteinmetz1/pyloudnorm

pyloudnorm

Figure 1. Measurement of integrated loudness following the ITU-R BS.1770 recommendation (ITU-R BS.1770-4).

The simplicity and flexibility of this package has lead to
an interest in pyloudnorm, which a variety of works now
utilize. Current applications include pre-processing for au-
dio machine learning datasets, such as the CLEAR dataset
for acoustic question answering (Abdelnour et al., 2018),
a dataset of multichannel hearing aid recordings (Fischer
et al., 2020), the LibriMix dataset which generated mixtures
of speech for source separation (Cosentino et al., 2020), the
creation of music mixtures in the Slakh dataset (Manilow
et al., 2019), and the OrchideaSOL dataset (Cella et al.,
2020), which features orchestral recordings. In addition to
dataset pre-processing, there have also been applications in
feature extraction for machine learning with the Surfboard li-
brary (Lenain et al., 2020), as well as in data augmentation in
Scaper (Salamon et al., 2017), and as a final post-processing
step in voice conversion (Chen et al., 2020).

The structure of the paper is as follows. In Section 2 we de-
scribe the algorithm and introduce recently proposed modifi-
cations. Then in Section 3 we introduce pyloudnorm, along
with other existing implementations. Section 4 presents an
evaluation of these implementations using the compliance
material provided by the recommendation, as well as our
own collection of examples. We finally present conclusions
in Section 5.

2. Algorithm
The proposed algorithm is outlined for the stereo case at
a high level in Fig. 1. First, the “K”-frequency weighting
consists of a high-shelf filter that aims to mimic the response
of the head, followed by a highpass filter that reduces the
influence of low frequencies. Then we take the filtered
signal of each channel yi, and split this into overlapping
blocks of 400 ms, with an overlap of 75%. We then compute
the energy of each block j in each channel i

zi,j =
1

N

N∑
n=1

yi,j [n]2,

where N is the number of samples in each block, and n is
the sample index within the block. The loudness of each

block is then given by

lj = −0.691 + 10 log10

∑
i

gi · zi,j ,

where gi = [1, 1, 1, 1.41, 1.41], for the left, right, centre,
left surround, and right surround, respectively.

The final step involves applying a gate in order to reduce the
influence of blocks with low energy. An absolute threshold
is given by Γa = −70 dB LUFS, along with a second rela-
tive threshold Γr, which is determined by first measuring
the loudness of all the blocks above the absolute threshold
and subtracting 10

Γr = −0.691 + 10 log10

∑
i

gi

(
1

|Jg|
∑
Jg

zi,j

)
− 10,

where Jg = {j : lj > Γa}, and |Jg| is the number of
blocks above the threshold. This enables us to compute the
final integrated loudness in the same way by summing only
blocks that fall above both thresholds

LKG = −0.691 + 10 log10

∑
i

gi

(
1

|Jg|
∑
Jg

zi,j

)
,

this time where Jg = {j : lj > Γa and lj > Γr}.

2.1. Proposed modifications

The recommendation makes clear that loudness measure-
ments correlate well with perception only when the signal
being measured is broadband in nature.

It should be noted that while this algorithm has
been shown to be effective for use on audio pro-
grammes that are typical of broadcast content, the
algorithm is not, in general, suitable for use to es-
timate the subjective loudness of pure tones. (ITU-
R BS.1770-4)

While this is not often an issue when employed in broadcast
scenarios, the use of this recommendation in other appli-
cations has continued to increase, potentially leading to

pyloudnorm

inaccurate measurements. For example, when measuring
the loudness of narrowband or percussive content, such as
isolated instruments, sound effects, impulse responses, as
well as other recordings.

The degree to which measurements produced by the rec-
ommendation deviate from perception has been studied. A
number of modifications have been proposed that aim to
improve the performance and robustness of measurements.
Cabrera et al. (2008) proposed some of the first adjustments,
informed by a number of listening studies. This involved
raising the cutoff frequency of the highpass filter to 149 Hz,
and the replacement of the high-shelf filter by a notch filter
centered at 1 kHz. Pestana & Barbosa (2012) first identified
potential shortcomings of the recommendation for common
multitrack sources, and later suggested adopting a smaller
gating block size of 280 ms in combination with a +10 dB
gain on the high-shelf filter (Pestana et al., 2013).

More recently, Fenton & Lee (2017) provided two alterna-
tive frequency-weighting filters. The first adjustment pro-
posed boosting the gain of the high-shelf filter by +5 dB and
changing the cutoff of the highpass filter to 130 Hz, as well
as the addition of a peaking filter with a center frequency
of 500 Hz. They also investigated a more complex modifi-
cation that replaced this peaking filter with a higher order
variant. Fenton (2018) later extended these results with a
further listening study, providing optimized filter and gating
block size parameters for different instrument types, which
they found improved the quality of equal loudness-based
mixes. De Man (2018) noted that the original recommen-
dation only provided filter coefficients at 48 kHz, so they
reverse-engineered the filter specification from the original
recommendation and provided filter prototypes that enable
fully compliant filters at any sample rate.

3. Implementation
We designed pyloudnorm with simplicity in mind. This
means that users can measure the loudness of an array of
audio samples using just three lines of code, as shown in
Listing 1. This includes importing the package, instantiating
a meter with the appropriate sample rate, and then passing
an array of audio samples to measure. Calling the integrated
loudness method will return the integrated loudness in dB
LUFS of an array of audio samples, as measured by a meter
following the original recommendation.

import pyloudnorm as pyln
create BS.1770 meter
meter = pyln.Meter(rate)
measure loudness of signal x
loudness = meter.integrated_loudness(x)

Listing 1. Using pyloudnorm in Python.

This enables users to carry out loudness measurements fol-
lowing the recommendation without any underlying knowl-
edge of the algorithm and its parameters. But, as outlined
in the previous section, a number of modifications have
been proposed, which improve performance for some use
cases. To facilitate the integration of these modifications,
pyloudnorm additionally exposes the underlying algorithm
parameters to users if desired. To enable use of the proposed
modifications we include pre-defined filter specifications.
This facilitates the use of these modifications by simply
passing a corresponding string while instantiating the meter.
We hope that this will enable users to make more accurate
measurements in the growing and diverse applications of
the loudness recommendation.

In addition to the modifications that have been proposed
thus far, pyloudnorm also includes the ability to easily adopt
new modifications. This includes any adjustments to the
gating block size and frequency-weighting filters. This even
enables users to define any cascade of arbitrary second-order
filters, providing a high level of flexibility, if desired. To
facilitate this, we include an IIR filter class that implements
not only the highpass and high-shelf filter prototypes used
in the original recommendation, but also low-shelf, low-
pass, peaking, and notch filter prototypes. This functionality
enables easy adoption of future modifications, as well as pro-
vides a platform for experimenting with new modifications
to the recommendation.

4. Evaluation
Beyond pyloudnorm, a wide variety of implementations of
the loudness recommendation have been made available,
both in streaming and offline formats. In this section we
compare pyloudnorm to four open source offline implemen-
tations, as well as two commercial implementations that
provide a graphical user interface.

4.1. Other implementations

Essentia (Bogdanov et al., 2013) is a popular C++ library
with a Python interface for music information retrieval fea-
ture extraction. In addition to many other common audio
features, Essentia includes an implementation of the loud-
ness recommendation. While Essentia provides an extensive
collection of audio features, it is large and somewhat cum-
bersome to install, making it less attractive in the case where
only loudness measurements are desired.

Another popular alternative is ffmpeg2, a cross-platform tool
for processing audio and video. Results from the meter can
be accessed in Python by making calls to the command-line,
or optionally through a wrapper, at the cost of some addi-
tional overhead compared to a pure Python implementation.

2
https://ffmpeg.org/

https://ffmpeg.org/

pyloudnorm

File Target

Implementation

pyloudnorm loudness.py ffmpeg libebur128 Essentia Audition youlean
Default De Man

FrequencySweep -18.0 -18.03 -17.99 -17.99 -18.00 -18.00 -18.18 -18.03 -18.02

25Hz 2ch -23.0 -23.00 -22.99 -22.99 -23.10 -23.00 -26.37 -23.04 -23.02
100Hz 2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -22.86 -23.04 -23.02
500Hz 2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -22.99 -23.04 -23.02
1000Hz 2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
2000Hz 2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
10000Hz 2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02

25Hz 2ch -24.0 -24.00 -23.99 -23.99 -24.10 -24.00 -27.21 -24.04 -24.02
100Hz 2ch -24.0 -24.03 -23.99 -23.99 -24.10 -24.00 -23.92 -24.04 -24.02
500Hz 2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -23.99 -24.04 -24.02
1000Hz 2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
2000Hz 2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
10000Hz 2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02

RelGateTest -10.0 -10.07 -10.03 -10.03 -9.60 -10.00 -10.03 -10.07 -10.15
AbsGateTest -69.5 -69.49 -69.45 -71.46 -69.50 -69.50 -69.45 -69.49 -69.55

Mono Voice+Music -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -22.97 -23.03 -22.98
Mono Voice+Music -24.0 -24.03 -23.99 -23.99 -24.10 -24.00 -23.97 -24.04 -23.98
Stereo VinL+R -23.0 -23.03 -22.98 -22.98 -23.10 -23.00 -22.97 -23.02 -22.99
Stereo VinL+R -24.0 -24.02 -23.98 -23.98 -24.10 -24.00 -23.97 -24.02 -23.98

Table 1. Comparison of loudness algorithm implementations with provided compliance material (ITU-R BS.2217).
Measurements that are not within the ±0.1 dB LUFS tolerance for compliance are marked in boldface.

libebur1283 provides an implementation in C, and addresses
some of the limitations of ffmpeg, namely that it provides a
more efficient interface since it has less overhead than the
far more powerful ffmpeg tool. Nevertheless, it still suffers
from a similar problem in that it does not feature a direct
implementation in Python.

A more recent implementation, loudness.py (De Man, 2018),
addresses many of these limitations by providing a Python
implementation utilizing NumPy (Harris et al., 2020), mak-
ing it the closest to pyloudnorm. Additionally, loudness.py
provides a more precise implementation of the frequency-
weighting filters based upon reverse-engineering the filter
specifications in the recommendation. The major limitation
is that it provides a standalone Python function, and there-
fore cannot easily be installed and imported within a Python
project, as pyloudnorm can.

We also consider two commercial implementations. These
include the meter in Adobe Audition4, a popular digital au-
dio workstation, and youlean5, a web-based implementation.
youlean allows users to upload audio files to a web page to
be analyzed with measurements reported back to the user.

3
https://github.com/jiixyj/libebur128

4
https://www.adobe.com/products/audition

5
https://youlean.co/file-loudness-meter/

4.2. Compliance material

While no reference meter exists, the ITU-R BS.1770 recom-
mendation provides compliance material in order to evalu-
ate meter implementations (ITU-R BS.2217). The provided
compliance material consists of mono, stereo, and multi-
channel audio files at 48 kHz sample rate. The recommen-
dation states that a compliant meter should measure within
± 0.1 dB LUFS of the target value.

As a first step, we compare the measurements of the com-
pliance material from the different implementations. Since
pyloudnorm incorporates the filter specification from loud-
ness.py proposed by De Man (2018), we perform measure-
ments with pyloudnorm both in its default configuration, as
well as with the modified filters. We report the full results
of these measurements in Table 1. While we find that py-
loudnorm, libebur128, and Audition provide measurements
that are fully compliant, surprisingly, we find that some
implementations do not produce the correct measurements.
Code to reproduce these results along with the compliance
material is made available online6.

6
https://github.com/csteinmetz1/pyloudnorm-eval

https://github.com/jiixyj/libebur128
https://www.adobe.com/products/audition
https://youlean.co/file-loudness-meter/
https://github.com/csteinmetz1/pyloudnorm-eval

pyloudnorm

File

Implementation

Mean pyloudnorm loudness.py ffmpeg libebur128 Essentia Audition youlean
Default De Man

sine 16Hz -24.08 -23.44 -23.44 -23.36 -23.50 -23.40 -28.48 -23.48 -23.51
sine 1000Hz -3.13 -3.05 -3.01 -3.01 -3.00 -3.00 -3.01 -3.05 -3.88
sine 1000Hz pad -4.18 -4.19 -4.15 -4.15 -4.20 -4.10 -4.15 -4.19 -4.32
sine 16000Hz -19.77 -19.69 -19.64 -19.64 -19.70 -19.60 -19.64 -19.69 -20.52
sine 19000Hz -19.78 -19.69 -19.64 -19.64 -19.80 -19.60 -19.64 -19.69 -20.52
multi-sines -10.65 -10.67 -10.62 -10.62 -10.60 -10.60 -10.64 -10.67 -10.79
hf-noise -9.34 -9.21 -9.16 -9.15 -9.60 -9.20 -9.16 -9.21 -10.04
chirp-150-190 -6.69 -6.55 -6.50 -6.52 -6.50 -6.50 -6.51 -6.55 -7.88
our gating test -3.37 -3.37 -3.33 -3.33 -3.30 -3.30 -3.33 -3.37 -3.61

piano-D6 -25.12 -25.02 -24.98 -24.98 -28.20 -25.00 -24.98 -25.03 -22.73
soprano-E4 -29.74 -29.82 -29.77 -29.57 -29.60 -29.60 -29.78 -29.61 -30.15
vibraphone-C6 -17.29 -16.95 -16.90 -16.90 -17.90 -16.90 -19.60 -16.95 -16.23
violin-B3 -12.78 -12.82 -12.78 -12.69 -12.70 -12.70 -12.78 -12.74 -13.00

Table 2. Comparison of loudness algorithm implementations with alternative material.
Measurements that disagree with others significantly (≥ 0.5 dB LUFS) are marked in boldface.

LOUDNESS.PY

The loudness.py implementation achieves compliance on
all test material except for AbsGateTest, which has a
significant error of -1.96 dB LUFS. This is likely due to
an issue when the input signal contains multiple blocks of
total silence. Interestingly, the result of a computation with a
block of silence results in a loudness for the block of−∞ dB
LUFS, which conceptually agrees with our understanding,
yet this causes a problem when summing the loudness of
the blocks. In pyloudnorm, we handle this by converting
−∞ values to the smallest value supported by the platform
(generally −1.8e308 for float64) before the summation of
the blocks.

FFMPEG

Similar to loudness.py, ffmpeg produces mostly compliant
measurements with the exception of a single test case. We
measured a deviation of +0.4 dB LUFS from the target value
in RelGateTest . It is unclear what causes this deviation
in the measurement. Interestingly, on many of the other
measurements, particularly the sine tone examples, the ffm-
peg meter produces readings that are exactly +0.1 dB LUFS
above the target, which is at the exact limit for compliance.

ESSENTIA

We find that Essentia underestimates the loudness of very
low frequency content, as is evident in the 25Hz 2ch test
case, where we measure a deviation of -3.37 dB LUFS. This
leads us to believe that Essentia has a subtle difference in
the shape of the filter in the low-end of the frequency range.

5 10 15 20 25 30
Frequency (Hz)

45

40

35

30

25

20

Lo
ud

ne
ss

 (d
B

LU
FS

)

pyloudnorm (Default)
pyloudnorm (De Man)
loudness.py
ffmpeg
loudness-scanner
essentia

Figure 2. Measured loudness of -6 dB sinusoidal tones.

We measured the loudness of a number of low frequency
sine tones with a peak of -6 dB, as shown in Fig. 2. This
clearly demonstrates a deviation in the shape of the filtering
in the low frequencies, yet the cause of this is not clear.

4.3. Challenging material

As a further investigation, we collected a set of material
aimed at challenging the implementations. This includes a
number of pure tones, noise, as well as instrument record-
ings. Since there exists no target loudness, we look for
agreement among the implementations. We compute the
mean measurement across all implementations and identify
any that appear to disagree with the mean by a significant
margin (≥ 0.5 dB LUFS). We report measurements on these
signals in Table 2.

pyloudnorm

Notably, we find that ffmpeg produces results that disagree
with the other implementations for a number of the test sig-
nals, in some cases producing a deviation of over 1 dB LUFS.
Essentia agrees for most of the test material, but measures a
deviation of nearly -5 dB LUFS for the 16 Hz sine tone, as
we would expect based on our earlier findings. loudness.py
agrees with the other implementations, and the issue we
observed previously does not appear. Finally, it appears that
youlean deviates significantly, with a moderate difference
in six of the thirteen test signals. As before, pyloudnorm,
libebur128, and Audition tend to produce measurements
that closely agree with each another.

Overall, it appears that many of the trends from the original
compliance material hold, namely that pyloudnorm, along
with loudness.py, libebur128, and Adobe Audition produce
measurements that tend to agree with each other. Neverthe-
less, these findings underlie an important realization that
not all of these implementations produce equivalent results.
Therefore care should be taken when utilizing their mea-
surements, especially in cases where measurements will
be compared across the different implementations, as this
could lead to audible differences in normalization.

4.4. Runtime

As the final component of our evaluation, we investigate
the runtime performance of the Python implementations.
While this evaluation does not directly measure the runtime
of each implementation, it provides insight into the amount
of time required when performing these measurements from
Python. We measured the average execution time for each
audio file in the set of compliance material over 10 runs.
We then report the average real-time factor (RTF) for each
implementation in Table 3, with the real-time factor indicat-
ing how much faster the execution takes with respect to the
duration of the audio file.

We find that ffmpeg is clearly the slowest, and this is likely
due to the overhead required in the processing pipeline,
which must be invoked in order to measure the loudness.
This is followed by Essentia, which provides its own in-
terface for reading audio data from disk. It performs
about 3x faster than ffmpeg, but still lags behind the oth-
ers. libebur128 achieves a 4x speedup compared to ffmpeg,
likely due to having less overhead.

In the case of the native Python implementations, which
include pyloudnorm and loudness.py, we utilize the sound-
file package7 to read the audio data from disk. We count
the time to load the audio data in the timings to provide a
more fair comparison with the previous methods that require
system calls and utilize their own data loading process. We
see a significant speedup with loudness.py, which achieves

7
https://github.com/bastibe/python-soundfile

Implementation RTF Audio Loader

ffmpeg 26x ffmpeg
Essentia 88x Essentia
libebur128 114x ffmpeg
loudness.py 421x pysoundfile

pyln (Default) 338x pysoundfile
pyln (De Man) 455x pysoundfile

Table 3. Mean real-time factor.

a RTF that is 16x greater than ffmepg. These timings are
comparable to pyloudnorm, which has similar overhead.
These results appear to agree with our intuition that simpler
implementations with less overhead tend to perform more
efficiently.

5. Conclusion
In this work, we presented pyloudnorm, an easy-to-install
Python package that implements the ITU-R BS.1770 recom-
mendation for measuring the perceived loudness of audio
signals. We outlined the flexible design of pyloudnorm, and
discussed the optional modifications that we incorporate
based on recent literature. These modifications aim to im-
prove the performance of measurements for more diverse
content, and have been neglected in previous implemen-
tations. We compared pyloudnorm to a number of open
source and commercial implementations, and performed an
evaluation of their measurements on the original compli-
ance material, as well as our own test signals. We found that
while most meters are compliant, a few appear to produce
unexpected measurements, and may not be fully compliant.
We demonstrated that pyloudnorm is both fully compliant,
and tends to agree with other meters on a set of test material
meant to stress these implementations. Finally, we com-
pared the runtime of these implementations and found that
pyloudnorm is among one of the fastest options.

Acknowledgements
This work is supported by the EPSRC UKRI Centre for
Doctoral Training in Artificial Intelligence and Music
(EP/S022694/1).

References
Abdelnour, J., Salvi, G., and Rouat, J. Clear: A dataset for

compositional language and elementary acoustic reason-
ing. In ViGIL Workshop at NeurIPS 2020, 2018.

Bauer, B. and Torick, E. Researches in loudness measure-
ment. IEEE Transactions on Audio and Electroacoustics,
14(3):141–151, 1966.

https://github.com/bastibe/python-soundfile

pyloudnorm

Bauer, B., Torick, E., Rosenheck, A., and Allen, R. A
loudness-level monitor for broadcasting. IEEE Trans-
actions on Audio and Electroacoustics, 15(4):177–182,
1967.

Bogdanov, D. et al. Essentia: An audio analysis library for
music information retrieval. In ISMIR, 2013.

Cabrera, D., Dash, I., and Miranda, L. Multichannel loud-
ness listening test. In 124th AES Convention, 2008.

Cella, C. E. et al. Orchideasol: a dataset of extended in-
strumental techniques for computer-aided orchestration.
arXiv:2007.00763, 2020.

Chen, M., Shi, Y., and Hain, T. Towards low-resource
stargan voice conversion using weight adaptive instance
normalization. arXiv:2010.11646, 2020.

Cosentino, J., Pariente, M., Cornell, S., Deleforge, A., and
Vincent, E. LibriMix: An open-source dataset for gener-
alizable speech separation. arXiv:2005.11262, 2020.

De Man, B. Evaluation of implementations of the EBU
R128 loudness measurement. In 145th AES Convention,
2018.

EBU R 128. Loudness normalisation and permitted maxi-
mum level of audio signals. Recommendation, European
Broadcasting Union, June 2012.

Fenton, S. Automatic mixing of multitrack material using
modified loudness models. In 145th AES Convention,
2018.

Fenton, S. and Lee, H. Alternative weighting filters for
multi-track program loudness measurement. In 143rd
AES Convention, 2017.

Fischer, T., Caversaccio, M., and Wimmer, W. Multichannel
acoustic source and image dataset for the cocktail party
effect in hearing aid and implant users. Scientific data, 7
(1):1–13, 2020.

Friberg, A. et al. Using listener-based perceptual features
as intermediate representations in music information re-
trieval. JASA, 136(4):1951–1963, 2014.

Grimm, E. Analyzing loudness aspects of 4.2 million mu-
sical albums in search of an optimal loudness target for
music streaming. In 147th AES Convention, 2019.

Harris, C. R. et al. Array programming with NumPy. Nature,
585(7825):357–362, 2020.

ITU-R BS.1770-4. Algorithms to measure audio programme
loudness and true-peak audio level. Recommendation,
International Telecommunications Union, October 2015.

ITU-R BS.2217. Compliance material for recommenda-
tion ITU-R BS.1770. Recommendation, International
Telecommunications Union, May 2011.

Jillings, N., Moffat, D., De Man, B., and Reiss, J. D. Web
Audio Evaluation Tool: A browser-based listening test
environment. In 12th Sound and Music Computing Con-
ference, July 2015.

Jones, B. L. and Torick, E. L. A new loudness indicator
for use in broadcasting. SMPTE Journal, 90(9):772–777,
1981.

Katz, B. Sound board: Can we stop the loudness war in
streaming? JAES, 63(11):939–940, 2015.

Lenain, R., Weston, J., Shivkumar, A., and Fristed, E. Surf-
board: Audio feature extraction for modern machine
learning. arXiv:2005.08848, 2020.

Lund, T. Control of loudness in digital TV. In NAB Conven-
tion, 2006.

Lund, T. Itu-r bs. 1770 revisited. In NAB Convention, 2011.

Lund, T. The CALM Act and cross-platform broadcast. In
NAB Convention, 2012.

Manilow, E. et al. Cutting music source separation some
Slakh: A dataset to study the impact of training data
quality and quantity. In WASPAA. IEEE, 2019.

Mansbridge, S., Finn, S., and Reiss, J. D. Implementation
and evaluation of autonomous multi-track fader control.
In 132nd AES Convention, 2012.

Moore, B. C. and Glasberg, B. R. A revision of zwicker’s
loudness model. Acta Acustica united with Acustica, 82
(2):335–345, 1996.

Moore, B. C. J. Development and current status of the
“cambridge” loudness models. Trends in Hearing, 18,
2014.

Olive, S. E., Welti, T., and McMullin, E. A virtual head-
phone listening test methodology. In AES Conference:
51st International Conference: Loudspeakers and Head-
phones, 2013.

Pestana, P. D. and Barbosa, Á. Accuracy of ITU-R BS. 1770
algorithm in evaluating multitrack material. In 133rd AES
Convention, 2012.

Pestana, P. D., Reiss, J. D., and Barbosa, A. Loudness mea-
surement of multitrack audio content using modifications
of ITU-R BS. 1770. In 134th AES Convention, 2013.

Robinson, D. J. M. Perceptual model for assessment of
coded audio. PhD thesis, University of Essex, 2002.

pyloudnorm

Salamon, J., MacConnell, D., Cartwright, M., Li, P., and
Bello, J. P. Scaper: A library for soundscape synthesis
and augmentation. In WASPAA, pp. 344–348, 2017.

Schoeffler, M., Stöter, F.-R., Bayerlein, H., Edler, B., and
Herre, J. An experiment about estimating the number of
instruments in polyphonic music: A comparison between
internet and laboratory results. In ISMIR, pp. 389–394,
2013.

Skovenborg, E. and Nielsen, S. H. Evaluation of different
loudness models with music and speech material. In
116th AES Convention, 2004.

Soulodre, G. A. Evaluation of objective loudness meters. In
116th AES Convention, 2004.

Stevens, S. S. The measurement of loudness. JASA, 27(5):
815–829, 1955.

Stevens, S. S. The direct estimation of sensory magnitudes:
Loudness. The American journal of psychology, 69(1):
1–25, 1956.

Vickers, E. Automatic long-term loudness and dynamics
matching. In 111th AES Convention, 2001.

Ward, D. and Reiss, J. D. Loudness algorithms for auto-
matic mixing. In AES Workshop on Intelligent Music
Production, 2016.

Ward, D., Reiss, J. D., and Athwal, C. Multitrack mixing
using a model of loudness and partial loudness. In 133rd
AES Convention, 2012.

Zwicker, E. and Scharf, B. A model of loudness summation.
Psychological review, 72(1):3, 1965.

